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Experimental measurements of the coherent wave transmission for ultrasonic waves propagating in water
through a random set of scatterers �metallic rods� are presented. Though the densities are moderate �6% and
14%� the experimental results show that the mean-free path deviates from the classical first-order approxima-
tion due to the existence of correlations between scatterers. Theoretical results for the mean free path obtained
from different approaches are compared to the experimental measurements. The best agreement is obtained
with the second-order diagrammatic expansion of the self-energy.
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I. INTRODUCTION

Wave propagation in disordered media is an old subject
that has undergone a tremendous revival in recent years
�1–6�. Whatever the types of waves, a disordered scattering
medium can be characterized by the spatial fluctuations of its
physical properties, which are modeled as random processes.
Given the relevant statistical parameters describing the me-
dium, one tries to predict and measure the ensemble average
of physical quantities such as the transmitted wave ampli-
tude, intensity, flux, spatial, temporal, or spectral correla-
tions, etc. Though the basic physical concepts in multiple
wave scattering can be applied to whatever types of wave,
the experimental advantage of acoustic waves is that wide-
band measurements of the field itself, and not only its inten-
sity, are easily achievable with piezoelectric transducers.

In this paper, we present ultrasonic experimental measure-
ments of the coherent wavefield �7–10�, i.e., the ensemble-
averaged field. Ultrasonic waves around 3 MHz are transmit-
ted through scattering slabs containing discrete metallic
scatterers immersed in water. The propagation of the coher-
ent wavefield in a nondissipative random medium is charac-
terized by an effective wave number kef f, whose imaginary
part accounts for the losses due to scattering. As the wave
propagates in the medium, the intensity of its coherent part
decays exponentially with a characteristic length �e
=1/ �2Im�keff�� termed the elastic mean-free path. For dilute
media, the elastic mean-free path is usually well approxi-
mated by �e=1/n� with n the scatterer density and � the
scattering cross section of an individual scatterer. We focus
here on the effect of spatial correlation between the scatter-
ers. The experimental results show that even for moderate
densities, the correlation resulting from steric repulsion be-
tween scatterers has a significant impact on the mean-free
path, which is found to deviate by up to 25% from the first-
order theoretical prediction 1/n�. To account for the experi-
mental measurements, we compare several second-order ex-
plicit expressions for the effective wave number derived
from earlier theoretical works. The Keller approach, based
on a second-order diagrammatic expansion of the self-
energy, is found to give the best agreement with the experi-
mental results.

II. EXPERIMENTS

The coherent transmission experiment is depicted in Fig.
1. A piezoelectric element generates a short ultrasonic pulse
�1 �s of a 3.2 MHz sine wave, average wavelength in water
�=0.47 mm� that propagates through water and encounters a
multiple scattering slab with thickness L. The slab consists of
a random collection of parallel steel rods with diameter
0.8 mm. The concentration can be expressed either as a �di-
mensionless� surfacic fraction or as a number of scatterers
per unit surface n. We have used two densities: n=29 and
12 rods/cm2 which correspond to surface concentrations of
14% and 6%, respectively. The elastic parameters of the steel
rods are cL=5.7 mm/�s, cT=3 mm/�s, and �=7.85 kg/ l.
The rods are held together by two horizontal thin epoxy
plates in which 0.8-mm holes were drilled at random posi-
tions. In order to avoid the overlapping of scatterers, an ex-
clusion distance d was imposed between the holes centers:
d29=1.2 mm and d12=1.87 mm, respectively. These values
were chosen proportionally to the mean distance between
scatterers �1/�n�, and result in a partial correlation between
scattering centers, the influence of which will be discussed in
the next section. The receiving array has 128 0.39-mm large
elements identical to the source element, with a 0.42 mm

FIG. 1. The source transmits a short pulse that propagates
through the slab. The scattered waves are recorded on a 128-
element array. The sample can be translated parallel to the array for
ensemble averaging.
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pitch. The elements are 10 mm in height and the setup is
considered as two-dimensional. Scattered waves emerge
from the slab and the array records 128 time series, as pre-
sented in Fig. 2. The signals are digitized over 12 bits at a
50 MHz sampling frequency. Rather than trying to give an
exact analytical expression for this transmitted wave, it is a
classical approach to describe the medium and the scattering
process statistically. A given sample is considered as a par-
ticular realization of a random process, and the ensemble
average of the transmitted field �also known as the coherent
wave field� is considered. In the situation we study here, the
scatterers positions are fixed and the ensemble average can-
not be achieved experimentally by moving the scatterers, as
is done naturally, e.g., in a scattering suspension. We simu-
late an ensemble average by translating both the source and
the array parallel to the slab by several wavelengths; another
wave field �128 time series� is acquired at the array. The
procedure is repeated at 100 different positions, and the 100
wave fields are averaged to obtain an estimation of the co-
herent wave front. A typical example is shown in Fig. 2, in
the case of a slab with thickness L=15 mm and density n
=29 rods/cm2. The average tends to reinforce the ballistic
pulse contribution �i.e., the first arrival�; it also appears that
beyond the first arrival, persistent spatially coherent wave
fronts have survived the average. This second contribution is
due to the individual resonances of the scatterers �7� and its
frequency spectrum differs significantly from that of the bal-
listic front. The next step consists in time-shifting these 128
time series �Fig. 2� to align them in phase �naturally, this
operation makes sense only if a well-defined wave front
emerges after averaging�. Then the time-shifted signals are
averaged to form the coherent wave form uC�L , t�. This wave
form is compared to that obtained under the same conditions
in water without the scattering slab �L=0�. The transmission
coefficient for the coherent energy is evaluated by

TC�L� =
� uC

2 �L,t�dt

� uC
2 �0,t�dt

=
� �UC�L,���2d�

� �UC�0,���2d�

�1�

with U the Fourier transform of u. When necessary, the spec-
tra are integrated in narrow frequency bands �0.1 MHz wide�
to obtain the frequency dependence of the transmission co-
efficient.

The extinction of the coherent wave results from two dif-
ferent physical phenomena, scattering and absorption. It is
well-known that the intensity of the coherent wave decreases
with thickness as exp�−KextL�, with Kext the extinction coef-
ficient related to the elastic mean-free path �e and to the
absorption mean-free path �a :Kext=

1
�e

+ 1
�a

. With the normal-
ization procedure we employed �Eq. �1��, the measured trans-
mission coefficient TC�L� is independent from the intrinsic
absorption length in water. Moreover, the additional absorp-
tion at the scatterer/water interface was found negligible
�11–13�. Therefore the decrease of the experimental coherent
transmission coefficient TC�L� with L gives a direct measure-
ment of the elastic mean-free path, free from intrinsic ab-

FIG. 2. Transmitted wavefield through a 15-mm thick slab with
density 29.54 scatterers/cm2: �a� one realization, �b� average over
100 positions, �c� same as �b� after time realignment, and �d� result-
ing coherent waveform. For �a�–�c� time is in the abscissa, and each
line of the picture represents the magnitude of the signal received
on one of the 128 array elements, in a linear grayscale. The signal in
�d� is normalized to its maximum amplitude.
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sorption. A least-squares linear fit of ln�TC� provides an es-
timate for �e and its standard deviation. The wideband values
of �e are 7.7±0.3 and 3.15±0.15 mm, respectively, for the
two concentrations. However, these wideband values hide
the variations of �e with frequency, which appear to be im-
portant �Figs. 3 and 4� as one could expect. The elastic
mean-free path strongly depends on frequency; in both
samples, the experimental results show that �e can vary by
more than a factor of 2 in the 2–4 MHz frequency range.

These results are consistent with previous studies which
showed that the total scattering cross section � of the steel
rods is weaker around 2.7 MHz because of an elastic reso-
nance; this makes the slab less scattering hence more trans-
parent around this frequency �7�.

Even though the surfacic fractions are moderate �6% and
14%� the usual approximation �e=1/n� does not correctly fit
the data �Fig. 4�. The discrepancy is particularly obvious for
small values of �e: for instance, in the most concentrated slab
between 3 and 4 MHz there is a difference of up to 25%
�corresponding to several standard deviations� between
theory and experiments. Except around the resonance
�2.5–2.9 MHz� where the approximation �e=1/n� appears
to fit the data reasonably, the actual mean-free path is sys-
tematically overestimated, and this difference cannot be ex-
plained by intrinsic absorption as we have argued. We think
it is linked both to the concentration and the correlation be-
tween scattering centers. In the next section we try several
second-order theoretical expressions of the effective wave
number to account for the experimental results.

III. THEORETICAL APPROACHES

In the following, we omit the time-dependence of har-
monic waves e−j�t. When a scalar plane wave ejk�0·r� impinges
on an elastic cylinder located at the origin, the far-field so-
lution at r� is written

ejk�0·r� + f�k�0,k���
ejk0r

�r
.

The scattering cross section is

� = �
0

2�

�f����2d�

with �= �k�0 ,k��� the scattering angle and f the scattering am-
plitude. Alternatively, other authors refer to a scattering ma-
trix t linking the incoming �k�0� and the outgoing �k��� wave
vector. Here we will express the results in terms of the scat-
tering matrix t rather than the amplitude f . In two dimensions
�2�, the scattering matrix and the scattering amplitude are
related by

t�k�0,k��� = − �8�k0e−i�/4f�k�0,k���

The scattering amplitude f or the scattering matrix t for an
elastic cylinder can be expressed as a modal sum �14� and
calculated numerically.

When dealing with multiple scattering through an inho-
mogeneous �but statistically homogeneous� slab, one tries to
evaluate the effective wave number kef f of the ensemble-
averaged transmitted field. The elastic mean-free path is re-
lated to the imaginary part of kef f, while the real part deter-
mines the speed of the coherent wave. In general, the exact
calculation of kef f is untractable, but different approaches and
approximations have been used. Most of them derive from
Foldy �15�. It is out of the scope of this paper to re-establish
his �and following� results, but we briefly recall the funda-
mental ideas �see, e.g., Ref. �16� for a thorough analysis of
Foldy’s and Lax’s works�.

FIG. 3. Coherent transmission through the most dense slabs �n
=29.54 cm−2�. Measurements of the transmission coefficient vs
thickness, at 2.8 and 3.5 MHz.

FIG. 4. Variation of the mean-free path with frequency for n
=29.54 cm−2 �top� and n=12 cm−2 �bottom�. Circles: experimental
measurement ± one standard deviation. Continuous line: first-order
theoretical prediction �ISA�.
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The complex wave field resulting from scattering of an
incoming plane wave 	0�r��=ejk�0·r� on an ensemble of discrete
isotropic point scatterers may be written as the sum of the
incident wave plus the contribution from every scatterer,
each contribution being proportional to the field exciting the
scatterer:

	�r�� = 	0�r�� + �
j

gj	
j�r� j�G0�r�,r� j� .

In this expression 	 j�r� j� denotes the external field acting on
the jth scatterer, gj characterizes the strength of this scatterer,
and G0 is the Green’s function of the homogenous embed-
ding medium. The external field itself may be written as

	 j�r� j� = 	0�r� j� + �
k�j

gk	
k�r�k�G0�r� j,r�k� .

From this couple of equations, Foldy calculated the
ensemble-averaged field under the essential approximation
that the external field acting on the jth scatterer remains the
same whether this scatterer is held fixed or not

		 j�r��
 j � 		 j�r��
 .

This is valid if conditional �a posteriori� and unconditional
�a priori) probabilities are identical, which, from a physical
point of view, means that the scatterers positions do not in-
fluence one another, like molecules of a perfect gas. Under
this hypothesis, the effective wave number is found to be

kef f
2 = k0

2 − nt�k�0,k�0� .

The backscattered amplitude and the scattering cross section
are related by the optical theorem �=−Im�t�k�0 ,k�0� /k0 �2�.
Usually n � t�k�0 ,k�0�� is much smaller than k0

2 and the square
root of the previous equation can be linearized into

kef f � k0 − nt�k�0,k�0�/2k0.

Precisely, in our two-dimensional �2D� case for the resulting
error to be smaller than 1% this condition requires
the concentration n to be less than 0.25� / �f�0� ��3/2

�230 scatterers/cm2 at 3 MHz which is largely verified
here. One then finds the well-known result

�e = 1/�2Im�keff�� � 1/n� .

Similarly to Foldy’s assumption, the quasicrystalline ap-
proximation �QCA� �16–20� consists of assuming that
		 j�r��
 j,k�		 j�r��
 j. To the first order in n, it gives the same
expression for the effective wave number.

Subsequent works �21,22� yielded refined explicit expres-
sions for kef f �hence the mean-free path� up to the second
order in n. Waterman and Truell �WT� obtained the following
result:

kef f
2 = k0

2 − nt�k�0,k�0� + n2�t2�k�0,k�0� − t2�k�0,− k�0�/4k0
2.

Lloyd and Berry �22� revised Waterman and Truell’s expres-
sion and proposed a corrected second-order expression in
three dimensions. Recently in a remarkable paper �16�, Lin-
ton and Martin �LM� analyzed thoroughly Foldy’s assump-
tion and the QCA; they derived another explicit expression

for kef f in two dimensions, based on the QCA and the “hole
correction” and assuming that the exclusion distance d is
small compared to the wavelength:

kef f
2 = k0

2 − nt�k�0,k�0� −
n2

2�k0
2 � tan−1�

2

d

d�
t2���d� . �2�

Nonexplicit formulations for kef f have also been established,
based on the QCA and the hole correction �19,20�.

We have computed numerically the mean-free path from
WT and LM expressions, the result is plotted in Fig. 5. There
is no visible difference between WT and the first-order ap-
proximation �e=1/n�, which is clearly inappropriate to ac-
count for the experimental results. On the contrary, LM’s
expression is closer to the experimental results, which is
quite remarkable since Eq. �2� is only valid in the limit kd
→0 while in our experiments kd�10–30. Yet the remaining
discrepancy is still significant.

A key parameter, besides the concentration n, is the cor-
relation between scatterers. Here the existence of a correla-
tion between the scattering centers is due to the exclusion
distance d, which is larger than the diameter of the rods.
Mathematically, correlations are usually characterized by the
radial distribution function g defined such that ng�r� is the
mean concentration at a distance r from a scatterer. Alterna-
tively, one may refer to the pair correlation function 1
−g�r�. For an ensemble of pointlike noninteracting particles
like in an ideal perfect gas, one has g�r�=1"r. If there is a
steric repulsion with an exclusion distance d between scat-
terers, the “hole correction” approximation consists in writ-
ing:

g�r� = �0, r 
 d

1, r � d .

However, the “hole correction” does not describe the corre-
lation properly. For scatterers picked at random with a given
density n and an exclusion distance d, the radial distribution
function is 0 for r
d but oscillates for r ranging between d
and �3d before reaching a plateau. An analytical expression
for these oscillations can be obtained via the Perkus-Yevick

FIG. 5. Variation of the mean-free path with frequency for n
=29.54 cm−2. Circles: experimental measurement ± one standard
deviation. Continuous line: Linton and Martin’s result, and dashed
line: Waterman and Truell’s.
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approximation �23,24�, but it is quite complicated and is still
only an approximation for g�r�. In our case, the coordinates
�xj ,yj� of each scatterer have been picked by a random num-
ber generator, with a uniform distribution for x and y, and
with the condition that no pair of scatterers could be closer
than d. Since we have the coordinates of each scattering
center, we can estimate g�r� by building a histogram of the
number of scatterers whose distance from a given scatterer is
comprised between 0 and r, and averaging for every possible
origin scatterer. The resulting function is plotted in Fig. 6 for
one realization, as well as for the average of 20 000 realiza-
tions. The average curve is similar to those obtained under
the Perkus-Yevick approximation �24�.

Once the radial distribution function g�r� is known �or
modeled� there are different approaches to take it into ac-
count explicitly in the calculation of the mean-free path. To
the first order in n, an approximation sometimes referred to
as the interference approximation �ITA� �25–28� consists in
replacing the scattering cross section � by

�c = �
0

2�

�f����2S���d� ,

with S the static structure factor, related to the spatial Fourier
transform of the radial distribution function:

q = 2k0 sin��/2� ,

S�q� = 1 − n� �1 − g�r��ejr�·q�dr� .

The structure factor and the corrected cross section �c have
been evaluated by numerical integration and plotted in Figs.
7 and 8. Here the effect of the structure factor is to lower the
scattering cross section by roughly 25%, which makes the
medium more transparent. This has also been reported in
previous works in optics �25,26�. However, in our case the
ITA does not fit the experimental observation at all, the dis-
crepancy between first-order corrected theory �1/n�c� and
the experimental mean-free path being even larger than un-
der Foldy’s assumption.

Another family of approaches, different from Foldy’s, the
QCA, or the ITA, is based on diagrammatic representations
and classification of multiple scattering events �2,29,30�.
Again, it is out of the scope of this paper to give a detailed
account of the diagrammatic theory of multiple scattering but
we give here a very brief overview. For monochromatic
waves, the scalar wave equation in a heterogeneous medium
may be written

��r�� + k0
2�r�� = V�r���r��

with V the “potential” characterizing the deviations from the
homogeneous medium with wave number k0=� /c0.

The Green’s function G satisfies the equation

�G�r�,r��� + k0
2G�r�,r��� = V�r��G�r�,r��� + ��r� − r��� .

Its solution may be written

G�r�,r��� = G0�r� − r��� +� G0�r� − r�1�V�r�1�G�r�1,r���dr�1.

Introducing a two-entry operator V�r�1 ,r�2�=V�r�1���r�1−r�2�,
we have

FIG. 6. Dashed line: radial distribution function estimated from
one realization �2000 scatterers with density n=29.54 cm−2 and ex-
clusion distance d=1.2 mm�. Continuous line: average for 20 000
realizations.

FIG. 7. Dimensionless structure factor S�Q� computed from the
radial distribution functions plotted in Fig. 6. One realization �dot-
ted line�, average over 20 000 realizations �continuous line�.

FIG. 8. Continuous line: scattering cross section � for a steel
cylinder with radius 0.4 mm. Dashed line: corrected scattering cross
section �c.
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G�r�,r��� = G0�r� − r��� +� � G0�r� − r�1�V�r�1,r�2�G�r�2,r���dr�1dr�2,

which can be condensed into a matrix product:

G = G0 + G0VG .

This is the closed-form expression for the Green’s function
G. If we reinject G in the right-hand side, we obtain the
well-known Born expansion:

G = G0 + G0VG0 + G0VG0VG0 + ¯ ,

which can be interpreted as a sum of an homogeneous term,
a single scattering term, a double scattering term, and so on.

The Born expansion may also be wrapped up as

G = G0 + G0TG0

with T the scattering operator such that

T = V + VG0V + VG0VG0V + ¯ .

For the case of a single scatterer, the scattering operator is
simply the scattering matrix t that we mentioned earlier.

Naturally, these relations can also be expressed in the spa-
tial frequency space via a Fourier transform. At this stage,
the Green’s function can be expressed either as an infinite
sum �Born series� or in a closed-form solution. Similarly, the
ensemble-averaged Green’s function 	G
 obeys

	G
 = G0 + G0	T
G0, �3�

which can be rearranged under a closed-form expression,
known as Dyson’s equation:

	G
 = G0 + G0�	G
 , �4�

� is called the mass operator, or the field kernel, or the
self-energy. The medium is supposed to be statistically sta-
tionary and invariant under rotation, so � and 	G
 only de-
pend on �r�1−r�2� and their 6D-Fourier transforms will be writ-
ten in the form F��k�1 � ���k�1−k�2�. Hence the Fourier transform
of Dyson’s equation gives a simple product in the k-space
whose solution is

	G
 =
G0

1 − �G0
.

The effective wave number kef f can be easily expressed in
terms of �. Since we have G0=1/ �k0

2−k2� in the k�-space, it is
convenient to rewrite the average Green’s function as 	G

=1/ �kef f

2 −k2�, with by identification kef f
2 =k0

2−�.
Of course, the main difficulty lies in the exact computa-

tion of the self-energy. In the diagrammatic approach, in or-
der to avoid lengthy expressions with multiple integrals and
keep a physical picture of the scattering process, the impor-
tant quantities like the scattering operator T, the average
Green’s function 	G
, and the self-energy � are schemati-
cally represented as a sum of diagrams. The diagrammatic
development for 	G
 is represented in Fig. 9. The conven-
tions �29,30� we follow here are

�1� a crossed circle symbolizes the scattering by one scat-
terer, averaged over disorder;

�2� a thick horizontal line represents the average Green’s
function;

�3� a thin horizontal line represents the homogeneous
Green’s function G0;

�4� dotted lines relate correlated scatterers; and
�5� continuous lines relating two circles indicate that they

represent the same scatterer.
All the diagrams of Fig. 9�a� may be rearranged according

to their connexity. A diagram is said to be strongly connected
if it cannot be decomposed into simpler diagrams without
cutting a line other than the base line. All strongly connected
diagrams may be gathered in a sum, which is represented in
Fig. 9�b�. The advantage of this classification is that the av-
erage Green’s function may be written in a closed form so-
lution �Fig. 9�c��. By identification with Eq. �4�, the self-
energy now explicitly appears as the sum of strongly
connected diagrams �Fig. 9�. Thus the self-energy is orga-
nized in a well-hierarchized sum of easily identifiable terms.

At that point, several approximations can be made. The
simplest is to assume that the scatterers are completely deco-
rrelated and neglect “loops” �which implies that each scat-
terer is visited by the wave at most once�. In the literature,
this approximation is referred to as the ISA �independent
scattering approximation�. Under the ISA, only the first term
remains in the development of the self-energy, which leads to

� = nt�k�0,k�0� .

This yields exactly the same expression for the effective
wave number as Foldy’s:

FIG. 9. Diagrammatic representations of multiple scattering. �a�
The average Green’s function is written as a sum of diagrams simi-
lar to a Born expansion represented here up to the third order. �b�
The sum of strongly connected diagrams appearing in �a� is denoted
�. �c� The development of the average Green’s function can then be
rewritten introducing �, and wrapped up as a closed form: Dyson’s
equation.
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kef f
2 = k0

2 − nt�k�0,k�0� .

Interestingly, loops only appear as a third-order correction in
the development of the self-energy, as was already pointed
out by Henyey �31� following a diagrammatic approach. But
spatial correlations between scatterers are of second order,
and should be taken into account before loops. The second
order term in the diagrams of Fig. 9�b� can be calculated
following Keller’s approach �32�, assuming that the scatter-
ers are small compared to the wavelength. In 2D, this yields
the following expression where the radial distribution func-
tion g�r� explicitly appears as a second-order correction:

kef f
2 = k0

2 − nt�k�0,k�0� − n2t2�k�0,k�0��
0

� i�

2
H0

1�k0r�J0�kef fr�

��1 − g�r��rdr . �5�

Note that the effective wave number kef f appears on both
sides of the equation; we computed kef f following an itera-
tive procedure. We used as a first approximation the effective
wave number given by the ISA, kISA. We evaluated the inte-
gral in the right-hand side of Eq. �5� to obtain a new value
for kef f, and repeated the procedure. It was found to converge
very rapidly �typically less than five iterations for the con-
centrations and frequencies we studied�; in fact, in the situ-
ations we studied here, if we simply replace kef f by kISA in
the right-hand side of Eq. �5�, the resulting error for the
mean-free path is always less than 0.2%. In such a case Eq.
�5� can be transformed into an explicit expression for kef f.
Theoretical results based on Eq. �5� are compared to the
experimental values of �e in Fig. 10. This time, we observe
that the agreement is excellent. The same agreement is ob-
tained with other slabs �n=18.75 cm−2� containing smaller
scatterers �diameter 0.6 mm� that resonate at a higher fre-
quency �Fig. 10�.

A numerical comparison between the experimental results
and the theoretical predictions for both concentrations is
given in Table I. Note that for 3D optical waves in latex
suspensions of spherical particles �33,34�, Keller’s second-
order perturbative result was also found to predict the attenu-
ation constant of the coherent field better than other ap-
proaches, even for particles with a radius exceeding the
wavelength, but for low dielectric contrasts. Here, the acous-
tic impedance mismatch between water and steel is roughly
30.

The effect of the second-order term on the sound velocity
has also been studied. It appears to be much smaller than for
the mean-free path. Even in the most concentrated slabs, the
difference between first- and second-order theoretical results
do not exceed 0.5% on the phase velocity and 5% on the
group velocity; the difference reaches its maximum near the
resonance frequency �2.8 MHz�. Experimentally, the group
velocity was measured in the most concentrated slabs, for
four different thicknesses �Fig. 11�. The group velocity was
found to differ very significantly from the sound velocity in
water around the resonance. This is in agreement with pre-
vious results �7–10�, and is due to the larger “dwell time”
�group delay� at the resonance which slows down the incom-
ing wave packet, as if the wave was trapped by the resonat-

ing scatterers. At 2.8 MHz, the experimental results are in
better agreement with the predictions from the second-order
diagrammatic approach, however, the experimental error
bars are too large to honestly discriminate between the first-
and second-order theoretical results.

IV. CONCLUSION

To the first order in n, there is no difference between the
various theoretical approaches we have studied. There is,
however, a conceptual difference between Foldy’s approach,

TABLE I. Mean relative difference between theory and experi-
ments in the 2–4 MHz band, for three types of scattering slabs.
ISA�independent scattering approximation, WT�Waterman and
Truell, LM�Linton and Martin, K�Keller second-order diagram-
matic approach, and Exp�average experimental standard deviation.

n=12 cm−2

diameter 0.8 mm
�%�

n=29.54 cm−2

diameter 0.8 mm
�%�

n=18.75 cm−2

diameter 0.6 mm
�%�

ISA 9.2 13.7 9.0

WT 8.9 13.2 8.6

LM 6.8 8.9 6.6

K 3.5 3.5 2.0

Exp 2.1 3.0 1.3

FIG. 10. Variation of the mean-free path with frequency for n
=29.54 cm−2, diameter 0.8 mm �top� and n=18.75 cm−2, diameter
0.6 mm �bottom�. Circles: experimental measurement ± one stan-
dard deviation. Dashed line: ISA. Continuous line: second-order
diagrammatic approach �Keller�.
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Waterman and Truell’s, or the QCA on the one hand and the
diagrammatic approach on the other hand. The former are
founded on mathematical hypotheses regarding the “external
field” 	 j�r��; the repulsion between scatterers can also be in-
corporated as an ingredient, but it is not easy to identify
which physical phenomena are neglected under these hy-
potheses. Whereas the diagrammatic approach shows that the
coherent wave field is entirely determined by the self-energy
and allows one to develop � in a well-organized series of
terms, each of them being represented by a diagram. There-
fore one can identify what kind of contributions �e.g., loops,
interactions between two or more correlated scatterers,. . .�

are neglected when the development is truncated at some
order.

The experimental results we presented show that even in
relatively tenuous media �6%–14%, and n � t � �k0

2� the sec-
ond order term is necessary to calculate the mean-free path,
not so much because of the scatterer density but because of
the correlation induced by the repulsion between scatterers.
If necessary, higher order terms �accounting for loops, corre-
lation between n-uplets of scatterers, etc.� could be incorpo-
rated, at the cost of a loss of simplicity. Actually the expres-
sion for kef f

2 derived from the diagrammatic approach can be
seen as a perturbative result with nt /k0

2 as a small parameter
that converges as long as it remains small. When it is no
longer small, or when scatterers are so strongly correlated
that high-order terms are necessary, the diagrammatic ap-
proach is of less interest. In dense scattering media, for in-
stance, other approaches would be more suitable, such as the
CPA �coherent potential approximation �2,8–10�� which was
shown to adequately describe experimental measurements in
very dense packings of spheres �volume fraction �60%�.
Here we illustrated the fact that even in a medium that can be
considered as dilute, very far from the close-packing limit,
scatterer correlations play an important role and classical
corrections such as Waterman and Truell’s or the ITA fail
while Linton and Martin’s �based on the QCA� and mostly
Keller’s �based on the diagrammatic approach� give much
better results, though they result in explicit and easily com-
putable formulations for the effective wave number.
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